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’ The moment method proposed by Lees (1959) is applied to the problem of vapour 
condensation on and evaporation from spherical liquid droplets when the droplet 
is not in equilibrium with its surrounding. Using a four-moment solution, an 
analytical expression is derived for the mass flux to or from the droplet surface 
when the droplet is surrounded by a pure vapour. By neglecting changes in 
temperature, an analytical solution is also obtained for the mass flux when the 
droplet is immersed in a vapour-gas mixture. The results of both of these analyses 
are applicable in the range from AIR -+ 0 to h/R --f 03, where h is the mean free 
path and R the droplet radius, and it is shown that in the limits the results 
reduce to the appropriate free molecule and continuum expressions. 

1. Introduction 
This study is concerned with the problem of vapour condensation on or 

evaporation from spherical liquid droplets under non-equilibrium conditions. 
The existing analytical investigations of these phenomena describe the process 
satisfactorily over limited density ranges only. When the mean free path h of 
the vapour surrounding the droplet is large compared to the droplet radius 
R (AIR 9 l), the mass flux of the vapour to or from the droplet is generally calcu- 
lated by the Hertz (1882)-Knudsen (1915) formula. Under continuum conditions 
(h/R < 1) Maxwell’s relation (Fuchs 1959) is used. These formulae do not con- 
sider the mass motion of the bulk vapour and expressions which also include this 
effect were obtained by Schrage (1953) for h/R B 1 and by Stefan (1881) for 
h/R < 1. Recently, Kang (1967) employed Langmuir’s (1915) model originally 
proposed for heat conduction, and calculated the droplet growth when the mean 
free path is comparable to the droplet radius. Kang’s analysis is expected to yield 
reasonable results at nearly free-molecule or at nearly continuum conditions. In  
the present investigation a kinetic theory approach is used to calculate the mass 
flux. The moment method proposed by Lees (1959) is applied to the problem and 
closed-form solutions are derived for the mass flux for two cases: (a)  when the 
droplet is immersed in its own vapour, and (b )  when the droplet is surrounded by 
a gas-vapour mixture. The expressions resulting from the analyses are applicable 
over the entire pressure range, i.e. the range from AIR --f 03 to h/R + 0. 
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2. Droplet immersed in pure vapour 
The problem considered here is the following. A liquid droplet (radius R) at  

a given temperature T,, with corresponding saturation pressure ps (or number 
density nJ,  is immersed in its own vapour. The temperature T, and pressure pv 

FIGURE 1. The oo-ordinate system. 

Vapour 

Incident mols : &,, 

Reflected mols : Z, = (1 - CT<) I, 

Evaporated mols: Z, = ueZf 

FIGURE 2. Interaction between the vapour and the droplet. 

(or number density n,) of the vapour are known at a distance far from the surface 
of the droplet (r -+ m, see figure 1). Condensation or evaporation occurs at  the 
surface of the droplet ( r  = 22). The growth of the droplet and the change in the 
droplet temperature are neglected and the problem is considered to be steady, 
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This assumption is likely to be reasonable as long as the increase in droplet radius 
is small compared to R. 

In order to define the process completely, the interaction between the vapour 
and the liquid surface must also be specified. The stream of molecules leaving the 
surface is composed of two parts; one due to reflexion and one due to evapora- 
tion (figure 2 ) .  It is assumed that all molecules leave the surface with a Max- 
wellian distribution corresponding to the temperature T,  (i.e. the thermal- 
accommodation coefficient is unity) with zero mean velocity. The mass flux due 
to the reflected molecules is related to the incident stream by the condensation 
coefficient a,, while the mass flux due to evaporation is related to the surface 
temperature T, and saturation pressure p ,  by the evaporation coeEcient o, 
(figure 2 ) .  

The vapour is taken to be composed of monatomic molecules obeying Maxwell's 
inverse-Mth-power law of repulsion. The vapour will also be treated as an ideal 
gas with the equation of state p = nkT. The problem at hand is to determine the 
mass flux to the surface of the droplet in terms of the parameters T,, ps ,  T,, n,, 
a, and ae. 

Following the suggestion of Lees (1959) the vapour molecules are divided (in 
velocity space) into two groups (figure l), each of these being characterized by 
a Maxwellian distribution function given by 

m 
jl = n, (G):eXP (- 2kT1 - ((vr-u1)2+v~+v$} for 277-a < p < a, 

The angles a, /3 (and also y, 21. which a.re to be used later) are shown in figure 1, 
and v,, v$, v, are the components of the absolute velocity v of the molecules. 
TI, T,, n,, n,, u1 and u2 are six unknown functions of the radial co-ordinate r ,  
which have yet to be evaluated. Once these functions are known any mean 
quantity (Q) can be calculated from the relation 

The six unknowns are determined by taking moments of Maxwell's integral 
equation of transfer, which, for the assumptions of spherical symmetry and 
steady-state conditions, is (Lees 1965) 

where A& represents the collision integral. By setting Q1 = m, &, = mv,, 
Q3 = imv2, Q4 = &mv,v2, Qs = mu; and Q6 = mu:, six differential equations 
are obtained for the six unknowns (see the appendix). Since a closed-form solution 
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of the equations (A1)-(A6) is not feasible, the problem will be simplified by 
reducing the six moment equations to four by taking u1 = u2 = 0. The calcula- 
tions performed recently by Shankar (1968) for condensation on infinite plane 
surfaces indicate that the mass flux calculated by the four and six moment 
equations do not differ significantly. However, in order to verify this conclusion 
for the spherical geometry and also to test the effects of the additional moments 
on the details of the flow field (e.g. density distribution) one would have to solve 
numerically the complete set of six moment equations. 

Using Q1, Q 2 ,  Q3 and Q4, the following dimensionless equations are obtained: 

mass n1 @ - E,  Ti$ = - I ,  ( 4 4  

( 4 5 )  
a _ -  _ -  r-momentum d (n ,~,+ ' i i ,~~)-cos3a-  (nlTl-n2T2) = 0, ar d;i; 

energy n,T'f-~,Ti = C, (44 

d d - -  _ -  (El T; + 72, Ti) - cos3 a - (n, T; - n2 Ti)  

I f  4 C  
15 h,F2 5 A? 

heat flux 
dF 

{al( 1 - cos a) +Ti2(  1 + cosa)} - - - (coS3d - cos a)  (TilTl - Ti2T2). 

( 4 4  

=---  

In  equations (4a)-(4d) C is an integration constant, h is the mean free path in 
the vapour evaluated at  r = 00. I is the dimensionless mass-transfer rate in the 
minus r direction 

I 
( 5 )  

%, F and ? are parameters normalized with respect to n,, T, and R. In  order to 
establish the boundary conditions, the expressions for the mean density and 
mean temperature must be determined. Equations (1) and (2) yield (ul = u2 = 0) 

(Ti) = +{El( 1 - cos a) +Ti,( 1 + cos a)}, (6a) 
- Z1Tl( 1 - cos a) + E2T2( 1 + COS 01) ( T )  = --:- -~ 

n,( 1 - cosa) + E2( 1 + cosa) ' 

Equations (6a)  and (65) show that for r -+ 00 (i.e. a+O), (T)+T2and (E)-+E,. 
Thus the boundary conditions corresponding to equations (4a)-(4d) are 

- - 
?+CCI: (T)=T,= 1 ,  ( % ) = T i 2 =  1, 

? = 1 : TI = T,/T,; - f = {( 1 - a,.) I,, + a&} - I,,, 1 (7 )  
or n1T$ = ( ~ - - ~ J B , T $ + ~ , E ~ T ~ .  

Owing to the complexity of the above equations, solutions to them could be 
found by numerical techniques only. However, for small temperature and 
pressure differences ((T, - T,)/T, < 1 and (pv -ps)/pv < 1) one may approximate T 
and ?i by the expressions 

F = l + t  and Ti=l+N, (8) 
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where t and N are small compared to unity. Introducing (8) into equations (4) and 
neglecting higher-order terms one arrives at  the following set of equations : 

The boundary conditions (7)  become 

F + m: t, = 0 ,  
F =  1: t, = -AT, 

N2 = 0, 1 (10) r - 

(l+Nl+$tl) = (1-cc)(1+h\+&t2) 
+ a,( 1 - AE - 4 ~ 5 5 ) .  

where AT = Tv - Ts and AE = E, -?is. Equations (9)-( 10) can be solved readily 
for the mass flux at  the droplet surface ( r  = R ) :  

where i = I/4nR2. In  the free molecule-limit (h/R -+ co) and for cc = a, = 1, 
equation (1 1) reduces to the Hertz-Knudsen formula 

In the continuum limit (h/R --f 0) and for cc = c, = 1 the mass flux becomes 
independent of the temperature difference and depends on the pressure difference 
only, a result which agrees with Maxwell’s equation (Fuchs 1959), and with the 
result of Marble’s ( 1966) analysis. Concurrent with this investigation Shankar 
(1958) analyzed a problem similar to the one described above. Equation (1 1) 
reduces to Shankar’s result in the special case ue = uc = 1. 

Although the nature of the interaction between the vapour and the liquid is not 
completely understood at the present time experimental evidence indicates that 
under conditions where the vapour and liquid phases are only in slight non- 
equilibrium both cc and ce are close to unity. Thus, equation (1 1) indicates that 
in many practical situations the pressure difference is a more important driving 
force for the mass transfer than the temperature difference, and that the mass 
flux calculated by neglecting changes in the temperatures may not be in signi- 
ficant error. This information is utilized in the next section. 

3. Droplet immersed in a gas-vapour mixture 
Here we shall consider the problem of mass transfer to or from a droplet im- 

mersed in a gas-vapour mixture, with the following assumptions made in 
addition to those specified in the previous section. The number density of the 
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gas ng is taken to be large compared to the number density of the vapour n. This 
condition implies that the number of collisions between vapour and gas molecules 
is much larger than between vapour and vapour molecules. It also assumes that, 
the gas does not interact with the droplet surface and thus the interaction between 
the vapour and the droplet surface is the same as described by equation ( 7 ) .  To 
define the problem completely, one must give at  r = co the temperatures of the 
vapour T, and the gas Tg, the number density of the vapour n, and the mean free 
path of collisions between the vapour and gas molecules h = A,. However, based 
on the results of the previous section the assumption is made now that the 
temperatures of both the vapour and the gas remain constant, i.e. 

T, = Tg = T, = T .  

Then for the isothermal vapour with no mass motion the appropriate distribution 
functions are 

In this case the only two unknown functions are n, and n2. Following the analysis 
of Wasserstrom, Su & Probstein (1965) presented for electrostatic probes, we 
substitute Q1 = m and Qz = mu,, into (3) and arrive at the following moment 
eauations: 

r momentum d -  n, + n2 - - cos3 a(%, - %,)I + = 3 cos a sin2a(Bl - %,) = - ( __ 2Rm) AQ. 

Due to the presence of the two separate components the collision integral AQ in 
(14b) is not zero. From Jeans (1954, equation (655)) 

&{ r n,kT 
(14b) 

AQ = mgngn(K/(m+mg)}'A,({vrg)-(v,)), (15) 
where A ,  and K are constants, the subscript g refers to the gas and the un- 
subscripted variables refer to the vapour. To preserve constant pressure, we 
must have (Jeans, equation (688)) 

ng (Vrg) + n ( V r )  = 0. 

D = [kT/{m,mA,(n + n&)I {(m f mg)/@. 

(16) 

(17) 

The diffusion coefficient for an inverse-fifth-power force law is (Jeans, equation 
(691)) 

For the assumption of n/ng 4 1, equations (14a) and (15)-( 17) yield 

For simplicity we replace the diffusion coefficient with the expression computed 
for hard-sphere molecules 

D = A ( c ) / ~ ,  (19) 
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where (c) is the mean molecular speed and h = hvg. Equations (14b), (18) and (1 9) 
give the second moment equation 
d -  - 3 2R 

(20) 

The boundary conditions corresponding to (14a) and (20) are (see equations (7)) 

(21) 

The solution of equations ( 1 4 4  and (20) for the above boundary conditions gives 
the mass flux of the vapour at  the droplet surface ( r  = R) 

n, + n2) - cos3 a@, - E,)} + I cos CI sin2a(n1 - E,) = - - sin2cc(E1 - a,). & {( r h 

} 
?+m: 

r = 1: 
(%) = n, = 1, 
n, = (l-a,)E,+aeEs. 

It can be seen that in the free-molecule limit for as = a, = 1 equation (22) 
results in the same mass flux as the analysis described in Q 2 (equation (1 1)). In 
the continuum limit (h/R -+ 0 ) ,  equation (22) becomes (a, = a,) 

which is exactly Maxwell's equation (Fuchs 1959). 
The fact that the analyses for both the pure vapour (equation (1 1)) and the 

vapour-gas mixture (equation (22)) yield the appropriate free molecule and 
continuum expressions lends confidence to the results. A more critical evaluation 
of the results would require a comparison between the theoretical expressions 
and experimental data. Although numerous experiments have been performed 
on the condensation or evaporation phenomena for droplets, unfortunately the 
authors were unable to find data that were reported in sufficient detail so as 
to allow a meaningful comparison between theory and data. 

This work was supported by the National Science Foundation under Grant 
NO. GK-1745. 

Appendix-the six moment equations 
The following six equations were obtained by substituting the distribution 

functions f ,  and f, (equations ( l a ) ,  ( l b ) )  into Maxwell's integral equation of 
transfer (equation (3)), by setting Q = m, muT, +mv2, &mvTv2, mu:, mu: and by 
assuming low mean-flow velocities and neglecting terms of order (m/2kT)2u2. 

-[(-) d mk 3 r ~ 2 ( ~ ~ - ~ , ) + : r n ~ 2 { ~ ~ ( l - ? / 3 ) + ~ , ( 1 + y ~ ) j ]  = 0, dr 2n- (A 1) 

&k(( l -y3)$+(l+y3)-  dD dD, ) + ( 2mk __ jrT ) 4 [ ( ( 1 - ? ~ ) ; i 7 ( ~ ~ - ~ , ) )  d dr 

+ __- r { 2x2 - (l-y4)}] = 0, (A2)  

2-3y+y3) (")& x2- d (Fl - F,) + (in-)* k dG G 
n-m dr dr r 

+ (1 + y3) 2 + - ( 
+-(Z+3y-y3) Q2 

r 
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k + 5 {GI( 2 - 5y3 + 3y5) + G2(2 + 593 - 3~5)) 

= @ (*')'[4k(y3-y)(D1-D2)+ (T) 2mk 4 {(El-E,)(y4- 1+$x2)}], (A5)  
n,h 2m 

where Ai = niT$, Bi = niui, Di = n,%, Ei = n,uiTi, 4 = n,Tj, Gi = n,uiq, 
Hi = niTt, K i  = niu,Ti, (i= 1,2) ,  x = sina, y = cosa, and the symbol () is 
defined by equation (2). 
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